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EXPANSION OF POLYNOMIALS IN BESSEL 0PERA.TORS 

S. I. Osipov 

k 
Le t  D = d/dt be a d i f f e ren t i a l  operator,, Bk = ((l/t) ( t D )  a 

n 
Bessel operator (see [l]) , k = 2, 3 ,  . . . , and l e t  Pn( h )  = h -k 

f alh + i. a be a polynomial with a rb i t ra ry  constant coeffi-  

cients.  

n-1 
n 

I n  t h i s  paper we w i l l  expand the operator P (B ) i n  powers of 
n k  

D’” and we apply t h i s  expansion t o  investigation of ordinary l inear  
d i f f e ren t i a l  equations. 

L e t  Gn be a s e t  of functions of t tha t  have n-th order deriva- &N- 

t ives ,  n = 1, 2 ,  . . . , and assume tha t  

nk 
V 

@ (n, k, D) = 1 Q (n, k, V, D + an.* 
V=l 

min(v, n) c 
“The problem of expanding operators coinciding w-ith Bessel operators 
or operators with similar structure has been discussed i n  a number 
of papers by other authors. See, fo r  example, 1) Issledovaniya po 
integro-differentsial’nym uravneniyam v Kirgizi i  (Investigations of 
integro-differential  equations i n  Kirgiz) , V o l .  11, Frunze, 1962, 
pp. 300, 310-311; 2) Materialy sed’moy nauchnoy konferentsii kafedry 
vysshey matematiki Frunzenskogo politekhnicheskogo i n s t i t u t a  (Pro- 
ceedings of the Seventh Sc ien t i f ic  Conference of the Depatments of 
Higher Mathematics of Frunze Polytechnic Ins t i t u t e ,  1963, pp. 87-90; 
3) J. Math. Anal. and Appl., V o l .  6, No. 3, 1963, pp. 395-397; 4) 
J. Riordan. Introduction t o  Combinatorial Analysis [Russian trans- 
la t ion] ,  For. L i t .  Publ. House, Moscow, p. 57, problem 18. 



v f  k - 1 ) - in tegra l  par t  of , a. = 1. w V f k - l  k k 

We have the following 

Theorem. On the s e t  G the operators Pn(Bk) - and @ (n, k, D) 
nk 

are  equivalent, i . e . ,  f o r  any function g ( t )  E G 
nk’ -~ ~ 

Proof. It i s  not d i f f i c u l t  t o  use induction t o  prove tha t  the 
following equation i s  t rue f o r  the s e t  Gpk: 

where A(k, v, p) are coefficients t ha t  are  independent of 2. 

following polynomial of degree p(k - 1): 
In  order t o  determine these coefficients,  we introduce the 

Let 

2 



be an m-th order Laguerre polynamial (see [ 2 ] ,  p. 110). 
It is  c lear  t ha t  

when m > p (k - 1). 
It i s  not d i f f i c u l t  t o  obtain 

m m 

e-t L m (t) W p , k ( t )  d t  = ( -  l)pk 

0 0 

e-t B S m ( t )  d t  

by integrating by par ts  and, consequently, 

By vir tue of (5) and ( 6 ) ,  

m=p 

i . e . ,  
P(k-1) m 

( -  l)r+p S (k, p, m) m! 
tr . 2 1 1  (r!) (m - r)! m=p r=O 

w p p  = 

3 



The function 

i f  m < p, 

, if m 2 p, 

can be used t o  represent Eq. (7) i n  the form 

and a change i n  the order of summation yields 

p(k-l) p(k-l) ( -  1)IYp 6 (a, p) S (k, p, m) m! 
tr . - _ _  2- Wp,k(t) = r=O 1 m=r  c (r!) (m - r)! 

The substi tution r = v - p leads t o  the equation 

It fo l lows  from ( 3 ) ,  (4), and (9) t ha t  

i .e . ,  
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I n  order t o  complete the proof of the theorem, note tha t  by 
vir tue of ( 3 )  and (lo), we have 

p= l  v=p 

The function (8) can be used t o  represent t h i s  last expression i n  the 
form 

nk nk 

and, changing the order of summation, we obtain 

It only remains t o  note tha t  

which co.mpletes the proof. 

we are dealing with the operator (d/dt) t (a/dt) ,  and the operator 
Z (n, 2, D) can be used t o  expand a polynomial i n  t h i s  operator. 

We s h a l l  consider the special  case k = 2 i n  more de ta i l .  Here 

Noting tha t  

c (2, vy P) = 

5 



we f ind  tha t  

and 

This r e su l t  a lso follows from the theorem discussed i n  [3]*  

Consider the coefficients C (k, v, p) , defined by formulas 
When k = 2 these coefficients,  as (11) shows, have a simple 

when we apply it t o  the operator (d/dt) t (d/dt) . 
(1'). 
structure,  and it is not  d i f f i c u l t  t o  evaluate them. I n  the general 
case (k = 3 ,  4, . . .) formulas (1') are  ra ther  complex. A s  a resu l t ,  
it may prove useful t o  use the following algorithm for evaluation of 
the coefficients C (k, v, p) : 

and, more generally, fo r  v = P I- 1, P I- 2, .-., pk, 

"It should be borne i n  mind tha t  the notation used i n  t h i s  paper i s  
t o  de- different  from t ha t  used i n  [3]. The author of [3] used B a 

note the operator tma Dtl+a D. 
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0 

f o r k = 2 , 3 ,  ... a n d p =  1, 2, .... 
c(k, v, p) are numbers such that for any function g ( t )  E G 

We shall now prove (12). By (10) and (3),  the coefficients 

Pk 

W e  take the function I (k-l) (k$ 1 from 111 as g ( t ) .  Since 

it satisfies the d i f f e ren t i a l  equation 

o,o,. . . ,o 

1 d k  
t 
- (t -1 Y = Y, a t  

w e  have 

s o  t h a t  the l e f t  side of this equation can be t reated as the resu l t  

of p-fold application of the operator (d/dt)(t(d/dt))  
k-1 

t o  the func- 

t i on  I . Noting t h a t  o,o,. . . ,o 

7 



co 

tr 

r=O (r!) 

(kkfi) = 1 - (k- 1.1 I 
o,o,. . . ,o k’ 

we can derive the following expression from (13) and (14): 

and comparison of the coefficients of the f i r s t  p(k-1) + 1 powers of 
- t i n  the r ight  and le f t  sides of (15) gives us 

Substi tution of r f p by v p yields 
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i 

r. 

. 

and, consequently, formulas (12) are  proved. 

cer ta in  conditions) t o  integrate d i f f e ren t i a l  equations whose l e f t  
side i s  of the form P (B )x ( t ) .  

d i f f e ren t i a l  equations and i n  practice, the l e f t  sides of d i f f e ren t i a l  
equations are usually given i n  the form of a l inear  d i f f e ren t i a l  ex- 
pression, i . e . ,  i n  the form 

The operational calculus of Bessel operators can be used (under 

But, both i n  the theory of ordinary 
n k  

(16) 

where g(t) ,...,\( t) are coefficients and m - i s  the order of the d i f -  

f e r e n t i a l  equation. 
I n  connection with th i s ,  it is interest ing t o  investigate the 

problem of which l inear  d i f f e ren t i a l  equations (16) are representable 
i n  terms of P (B ) x ( t )  and t o  give a method f o r  reducing (16) t o  the 

form P (B ) x ( t )  when t h i s  i s  possible. 
n k  

n k  
It i s  a d i rec t  consequence of the expansion theorem fo r  P (B ) n k  

tha t  representabil i ty of (16) i n  the form P (B ) x ( t )  requires t ha t  
n k  

(t) be polynomials and tha t  q (t) be constant. 

Let qo(t) J"',qm-l (t) be polynomials i n  - t and l e t  q (t) be a 
m 

constant, m 2 2 (the cases m = 0 and m = 1 are t r i v i a l ) .  Using the 
expansion of P (B ) and considering tha t  the number of pairs of in-  

tegers (n, k) sat isfying the conditions kn = m, k 2 2, n 2 1 for any 

fixed number m i s  f i n i t e ,  we can always establ ish whether or not (16) 
i s  representacle i n  the form P (B ) x ( t ) .  

m qo( t, > ql( t, J * - * 3 qme1 

n k  

n k  

9 



In  order t o  do t h i s  we first f ind  a l l  of the admissible pairs 
of values of n and & f o r  a given m. 
pair  with t h e l a r g e s t  value of - k Tdenote it by kl, and denote the 

corresponding value of n by n ) and we calculate E( ( v  -k k - l)/kl) 

and min ( v ,  n ) for v = 1, 2 ,..., m. 

H,v B,v 

Among these pairs  we select  a 

1 1 - 

1 
L e t  D and D be the smallest and largest  of the exponents 

contained i n  q (t) . If q (t) E 0 ,  we put 
.m-v m-v 

0 = v - min ( v ,  n 1, 0 = v -  E ( v + k l - l )  

B, kl 
H, v 1 

We then construct Table 1 un t i l  a negative number appears i n  
column IV or V I I .  
not representable i n  the form Pn (B 

ing the next admissible pa i r  of values of E and k. 

If such a number appears, we conclude tha t  (16) is  
) x ( t ) ,  and we then turn t o  t e s t -  

1 kl 

TABLE 1 
I 

I - 
V 

1 

.m 
- 

If a l l  of the numbers i n  columns I V  and V I 1  are nonnegative, /1.54 
we write the polynomials q (t) i n  the form 

m-v 

10 



I I1 

... 
- 

1 

m 

n 
1 

--- 
1 

TABLE 3 

v m i n (  v,2: 

1 1 
2 2 
3 2 
4 2 
5 2 
6 2 

- 
I11 

0 
H, v 
0 
0 
1 
2 
3 
4 

TABLE 4 

Iv I V 

m i n (  v,2)+0 -v 
H, v 

0 
0 
0 
0 
0 
0 -~ -- 

vi1 
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1 
2 
3 
4 
5 
6 

1 

0 
0 
0 

2 

I n  t h i s  case, @(v,  p) i s  uniquely determined by the polynomial 
q 

f o r  p = 1, 2,. . . ,nl  and v = pt p f 1, ...,p kl. 

P(v,  p)/C(kl, v, p) a t  the intersect ion of the v-th row and the p-th 

column i n  Table 2. 

(16) i s  not representable i n  the Tomi P 

the next admissible pa i r  of .rakes f o r  

conclude tha t  (16) i s  representable ir, the form P 

the coefficient ar, 

the number of the p-th column. 

(t) . We use formulas (12) t o  evaluate the coefficients C(kl, v, p) 
.m- v 

We place the fract ions 

When different  f ract ions appear i n  any coliuan we conclude tha t  
(B ) x ( t )  and turn t o  tes t ing 

and k. 
nl kl 

If, however, a l l  of the f r ac t iom i n  each column aTe equal, we 
(B ) x ( t )  and tha t  

(Bk 3 i s  
nl kl 

= 1, 2 ,  ..., nl, of the polynomial P 
1'PJ 1 

Consider, f o r  example, the l inear  d i f f e ren t i a l  expression 

2 d  4 a3 
at5 at4 at3 at* 

(1.7) 
The admissible pairs  of values of E and k are  

. 

n 1 2 3  
k 6 3 2 .  

12 
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I 

W e  f irst  t e s t  nl = 1, k = 6 .  W e  construct the f irst  table  f o r  t h i s  1 
case -- Table 3. 
-1. 

A t  v = 2 we obtain a negative number i n  column IV: 
A s  a resu l t ,  (1.7) cannot be represented i n  the form P (B ) x ( t ) .  1 6  

We now turn t o  tes t ing  the pa i r  n = 2, k = 3. 2 2 
? The f irst  tab le  f o r  t h i s  case -- Table 4 -- yields no negative 

en t r ies  and we continue the investigation. We have 

p= 1 

2 

q4( t )  = 4 = 1 B(2, PI t 2-p , p(2,1) = 0, p(2,2) = 4; 
p= 1 

4-P 
(t) = 38t"=C p(4, p) t 8(4,2) = 38; 92 

p=2 

Computation of the coefficients C ( 3 ,  v, p) f o r  p = 1, 2, and V = P , - - .  
. . . ,3p yields 



c(3, 1, 1) = 1, c(3, 2, 1) = 3, c(3, 3, 1) = 1, c(3, 2, 2) = 4, 

and we obtain Table 5, which shows that (17) is representable in the 

form (B ) x(t). 
3 
2 

Received: 29 June 1963 
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